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ABSTRACT

For a pulsed, binary detector system, when one is given the
probability that a target register a "1" is Pk, where k indexes
the relative position of the target with respect to the edge (or
some arbitrary benchmark) of the antenna pattern, both the
optimum linear detector and the likelihood ratio detector are
shown to be weighted moving windows.

A rigorous formula for the probability of detection of a mov-
ing window is derived (for the case Pk is a constant) which con-
sists of a finite series, of which the first few terms suffice for
reasonable accuracy.
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SOME PROPERTIES OF A GENERALIZED MOVING-
WINDOW BINARY DETECTOR

INTRODUCTION

We consider an interrogation system consisting of a pulsed transmitter, a receiver,
a binary detector, and an antenna which scans the region for the detection of targets. The
transmitter periodically sends out a sequence of pulses or pulse patterns. If a target is
present within the solid angle scanned by the antenna pattern, the target responds with an
appropriate pulse pattern. These responses will be received by the interrogator, de-
modulated, and finally the binary detector will register a "1," indicating reception of a
response appropriate to a true target. In the absence of such a response, the binary de-
tector will register a "0."

Despite the presence of a target, the binary detector may sometimes falsely register
a 0 because the signal level is too low, especially if the target is near the edge of the
antenna pattern. Also, despite the absence of a target within the scanned solid angle, the
interrogator may sometimes falsely register a 1 because of the response from unwanted
targets through side lobes, or reflections, or noise. In Fig. 1 we indicate a typical an-
tenna pattern and beneath it we show how the probability of registering a 1 varies with
the relative position of a target with respect to the antenna pattern. In the absence of a
target, i.e., if the target is outside the scanning angle, we will assume that the probability
of the interrogator registering a 1 is constant and equal to p0 . When the target lies
within the antenna pattern, the probability that its response registers a 1 will be indicated
by Pk I where k indexes the relative position of the target with respect to the edge (some
arbitrary benchmark) of the antenna pattern. Given these a priori probabilities, we de-
rive an expression for (a) an optimum (with respect to signal/noise ratio) linear digital
detector, (b) a maximum-likelihood digital detector, and (c) a closed explicit representa-
tion of the probability of detection for both (a) and (b) for the case where the antenna pat-
tern can be approximated by a rectangle. For this case, the optimum detector becomes
a moving window detector (1-4).

Fig. 1 - Probability that a target
registers a 1 as a function of its
angle (ordinate) from the edge of
the antenna pattern

Po Pi Pk Ph Po

OPTIMUM LINEAR FILTER

At the time t, we have available past observations of the output of the binary detec-
tor, namely, Yt, Yt_ 1s ... Yt . ... , where the Y,-j are independent binary variates
which may take on the values 1 or 0 with varying probability, Pk j or 1- Pk , respec-
tively, depending upon the relative position of a target with respect to the edge of the
scanning pattern, indexed by the subscript k i I
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We choose a linear combination of the elements of our time sequence as a statistic
Zt, and choose the coefficients so as to maximize its signal/noise ratio.

Thus

N

Zt= E C yt (1)
j= 1

where cj are parameters to be optimized. The signal/noise ratio is

s/N ( Zt Zt n)2/on2 (2)

where

Zt,s =_tE Cj ft_j). I cj Pk (3)

is the mean value of the statistic under the hypothesis that a signal exists, i.e., a target
lies within the antenna patterns; and where

= = N N(4)

Zt,n Y Y-) Po E ji

is the mean value under the hypothesis that no signal exists, i.e., no target lies within
the antenna pattern, and where aon is the variance of Zt under the hypothesis of no
signal:

2 ~~~~N
(>n Zt,n ( j=, n) (1 o)EC

Letting pk = Pk - p0 and substituting Eqs. (3), (4), (5) into Eq. (2) yields

S/N I(E i ci (6)

Differentiating S/N with respect to C. and setting the derivative equal to zero, one ob-
tains

C= = b ; (7)

where b is an arbitrary constant. Substituting Eq. (7) into Eq. (1) results in
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N

zt = E Pk. Yt- ' (8)
j=1 

which is the optimum detector whose S /N ratio is

N

E PkU (9)

(S/N) P - ____q_

(SNopt - p q 

where

Notice that if N, the number of samples collected, exceeds the number of attempted hits
or trials per target, i.e., the maximum number of samples occurring within the scanning
angle, then for j > N, Pk = P. , and Pk. - Po = 0. Subject to the above assumptions, the
optimum detector collects N samples (where N is the maximum of hits that can occur on
a target), weighs each binary response by Pk, and measures the weighted sum. At the
instant the target is leaving the beam, at position N in Fig. 1, S/N assumes its maximum
value.

LIKELIHOOD RATIO DETECTOR

To investigate the likelihood ratio detector (5), we assume that at each instant t,
we have an N -termed subsequence

Yt, Yt_ 1* * Yt-N+I

of an evolving time series. (In the time series, t is a variable, but within each subse-
quence t is fixed.) Elements of each subsequence may originate from a target, and we
wish to test each running subsequence to determine the occurrence of a target using the
likelihood ratio technique, and not limit ourselves to the constraint of a linear filter. In
Fig. 2 is plotted a sequence of probabilities of 1 occurring in time.

Fig. 2 - Probability of 1
occurring in time

IP, 2, P, P"|

At each instant the entire infinite sequence may be considered to move one step forward,
forming a new subsequence in the window which holds N terms. The probability that each
element equals 1 is Pk' where again, k is the index describing the position of the target
with respect to the edge of the scanning pattern at the time the target generated that par-
ticular response element.

Let

Yt = Yt Yt- I y .. Yt-N+ I
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Then the likelihood ratio is

L = P [Yt I S]/P [Yt I NS] (10)

where P [Yt Is] is the probability of obtaining Y, under the hypothesis that a target is
within the scan, and P [Yt INS] is the similar expression for the case of no target. It is
convenient to reorder Yt, . .. , Yt-N+ I as Y1, ... YN and designate the generic term as
Yi, i = 1, ... N.

If the Yi are statistically independent,

Y. ( 1-Y. )
N P(Y I S) N Pk . qk .

L = 17 H = n 1 1 (10a)
i=l P(Yi|NS) i=- Yi (1Y)a

'0 

Since terms in the numerator and denominator of L cancel if the sample length exceeds
the number of samples in a scan, we limit the subsequence to the number of samples in
a scan, which we designate by N. Consider

log L = l (Yi log 1, q0 (lob)

Just as the target is leaving the antenna pattern, when the subsequence is in the position
indicated in Fig. 1, log L reaches its maximum value. At this time the position of the
target causing each Yi is known, and Pki = pi, as shown in Fig. 1. The likelihood ratio
statistic is

N

which also indicates a linear filter.

To compare the S/N ratios of the two filters, let

a. = log Pi CO (12)
qi PO

The signal in the S/N ratio is given by the mean difference between the indication in the
presence of a signal and that in the absence of a signal, or

N N

z -z = 1 ai(pi -P) = 2 ai Pi (13)

-2 = ai Yi) a, = POqE a (14)

(S/N) = ( E i ip) (15)
pO q, E ai
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The SN ratio of the likelihood detector divided by that of the optimum linear detector is

(S/N)Lik (IaPi<1
S/N) cp-t a? 2 i 2

which shows that the S/N ratio, albeit useful, is not an impeccable criterion of excel-
lence, since the likelihood ratio detector will yield a higher probability of detection than
one optimized for S/N ratio. For the case when the pi distribution is rectangular, both
filters become identical, namely,

Z= 2Yi X

and their S/N ratio is given by

S/N = -PO) N (16)
pa q,

where ps = probability of 1 if a target exists, and N is the number of trials per scan.

PROBABILITY OF DETECTION

Using an optimum filter and making a rectangular approximation to the antenna gain
pattern, we derive an expression for the probability of detection. the number.
trials per scan, the optimum linear filter examines each successive dsubsequence of
ength N from the output of the binary detector, sums the N terms, and if the sum equals

or exceeds a threshold T, registers the occurrence of a target. If N = 2, T = 2, and a
target exists (Fig. 3), it will be registered provided the sequence sum equals or exceeds
T in the window (or sequence) w., or w -, or w1, i.e., provided the sequence symbolized
by [Yi], i = 1, 4 contains at least one subsequence of length 2 for which the threshold is
at least equaled. In general, for N trials per scan, the subsequence window sums N suc-
cessive terms, and the probability of detection is the probability that (Fig. 4) there exists
a subsequence of N terms whose sum will at least equal T. The sequence of Fig. 4 con-
sists of a subsequence of N - 1 binary variables for which p ( 1) = p0 , followed by a sub-
sequence of N terms for which p (1) = p, followed by a sequence of N - 1 terms for
which p (1) = p.

wo

Fig. 3 - Probability of 1 occurring
in the sequence of responses for
which a target exists within a
window of length 2

W-1 WI
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N-
Fig. 4 - Probability of 1 occurring in

-(N-i)- - (N-1) - the sequence of responses for which
a target exists within a window of

I I l l . l l l length N

Let E denote the event that a subsequence of length N containing at least T I's oc-
curs. The event E is a composite event consisting of a subset of the set of all possible
sequences of length (3N-2) . In all, there are 2 (3N-2) of these sequences, and they are
mutually exclusive. This set of all possible sequences may be partitioned into T + 2
nonoverlapping sets, namely S(> T), the set of sequences containing more than T suc-
cesses in the central window W., and S(j), j = 0, 1, ... , T, the set of sequences con-
taining precisely j successes in the central window. The event E certainly includes
S (> T) and S (T), as well as certain elements of S (j) for j < T. We proceed to enumer-
ate those elements and compute their probability.

Consider the set of the sequences S(T- 1) for which there are T-1 successes occur-
ring in the central window W 0 . Of these, those for which the (T- 1) 1's occur in the first
(N - 1) cells of W., and for which a 1 occurs immediately to the left of w, qualify for the
occurrence of event E (Fig. 5a), regardless of the composition of the sequences to the
left, and regardless of the composition to the right. Since we are limiting ourselves to
(T- 1) l's in W,, it is essential that a 0 occur in the cell to the extreme right of W.. If
S (T- 1) designates the set of these sequences,

Prob(SI(T- 1)) = 2 poq PI I

is the probability of their occurrence, where PI' is the probability of obtaining T-1
successes in (N - 1) trials. The factor 2 occurs because of symmetry, interchanging
right with left. Here,

PN-I (N-) T- 1 N-T

T-1I - (T - 1)! (N - T)! p q

where

q= i-p.

Consider now those sequences in S(T - 1) for which (T - 1) successes occur in the
first (N - 2) cells, and 0's occur in the last two cells of W, (Fig. 5b). If the subsequence
(1, 0) immediately precedes w., then these sequences qualify for the event E. Further-
more, none of these sequences are contained in S (T - 1). If S2(T- 1) designates the set
of these sequences, then

Prob(S 2 (T- 1)) = 2 Pq q PT- 1

is the probability of S2(T - 1). Similarly (Fig. 5c),

Prob(S 3 (T- 1)) = 2 p 0 q2 q3 pN- 3

is the probability of another subset of S(T- 1) which qualifies for E and does not overlap
S2 (T - 1) or S, (T - 1) and so on, until we exhaust cells to the left of WO,. The probability
of those sequences of S (T - 1) which qualify for E is then
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WO

-- T-1 inW0-1 ---- 0

-- T-1 in Wo -2-- 0 0

- T-1 in Wo -3--0 0 0

-4---T-1 in Wo -4-0 0 0 0

-.---T-2 inW0 -2.0 0

-4--T-2 inW0 -3-0 0 0

-- T-2 in Wo-4-0 0 0 0

--*-T-3 in WO-3-0 0 0

- T-3 in WO-4.-0 0 0 0

T-1 inWo

poq pN- 1

p q q 2 P N -2

p0q~q
3 PT-1

p q2q 3 p N- 3

p q3q 4 pNN 4
0 T- 1

T-2 in W0

(p q)2 pN 2

(p0 q)2 q0 qP T -2

(p0 q)2 (qq) 2 pN - 4

T-3 inWo

(p0 q)3 p NT3

(poq) q0 q P1T 3

Fig. 5 - Table of possible configurations of binary digits
qualifying for the event E, namely, that at least TI's occur

N-I

Prob(S(T-1)IE)= 2 p~q E (q. q)J PN j .:
;=O

Since the number of successes cannot exceed the number of trials,

max(j) S N-T .

Consider now these sequences of S (T- 2) which qualify for E, diagrammed in Fig.
5e, f, and g. One such set of sequences (Fig. 5e) consists of (1,1) immediately to the
left of W., followed by a sequence of N - 2 trials in which T - 2 l's occur, followed by
(0,0). The probability of all sequences of this type is

Prob(Si(T-2)IE) = (p 0 q) 2 PT_2

Similarly, one finds for the probability of all those sequences in S (T - 2) which qualify
for E (Fig. 5e, f, g),

(a) 1

(b) 1 0

(c)

(d)

1 00

1 000

(e) 1 1

(f) I 1 0

(g) 1 1 0 0

(h) I 1 1

(i) 1 1 1 0
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N-T

Prob[S(T- 2) 1E] = 2(p0 q) 2 L (q q) j p12
j=O

Similarly, one finds for the probability of those sequences in S (T - 3) which qualify for
E (Fig. 5h, i),

N-T

Prob[S(T-3)LEI = 2(p. q) 3 21 (q
0 q) 3-

j=O

Summing up,

T N-T T

2 Prob(S(T-n)IE) = 2 1 2 (p0 q) (q 0 q) T-n
n=O j =O n=1I

The probability of detection PD' i.e., the probability of getting at least one window with
at least T l's is

N N-T T

PD 21E pN + 2 21E (po q)- (q0 q)- ipT-n*
j=T j=O n=1

On evaluating PD numerically for several reasonable value of p0 andp, it was found that
the second summation converged extremely fast and only the first few terms were re-
quired for reasonable accuracy.

CONCLUSIONS

1. For a pulsed, binary detector system, when one is given the probability that a
target register a 1 is Pk' where k indexes the relative position of the target with respect
to the edge (or some arbitrary benchmark) of the antenna pattern, the optimum linear
detector is a weighted moving window; the likelihood ratio detector is also a weighted
linear detector whose weighting coefficients differ slightly from those of the linear de-
tector, and whose signal/noise ratio never exceeds that of the optimum linear detector.
For the case when Pk is a constant for all targets within the antenna beam, both detec-
tors become identical.

2. A formula was derived for the probability of detection of a moving window (for
the case Pk is a constant) which consists of a finite series, of which the first few terms
suffice for reasonable accuracy.
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